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Abstract 

 

It is important to be able to accurately simulate the variability of solar PV power 

plants for grid integration studies. We aim to inform integration studies of the ease of 

implementation and application-specific accuracy of current PV power plant output 

simulation methods. This report reviews methods for producing simulated high-

resolution (sub-hour or even sub-minute) PV power plant output profiles for 

variability studies and describes their implementation. Two steps are involved in the 

simulations: estimation of average irradiance over the footprint of a PV plant and 

conversion of average irradiance to plant power output. Six models are described for 

simulating plant-average irradiance based on inputs of ground-measured irradiance, 

satellite-derived irradiance, or proxy plant measurements. The steps for converting 

plant-average irradiance to plant power output are detailed to understand the 

contributions to plant variability. A forthcoming report will quantify the accuracy of 

each method using application-specific validation metrics. 
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1. INTRODUCTION 

For grid integration studies that examine the effects of adding solar power to the electric grid, it 

is important to accurately represent the output of solar power plants. However, the accuracy 

requirements vary depending on the study purpose. Some integration studies focus on balancing 

area and market operations at the bulk system level (e.g., [1]) and consequently require accurate 

estimates of plant energy production. Other studies focus on voltage regulation at the distribution 

level (e.g., [2]) and require accurate representation of the variability (i.e., change with time) of 

PV system output. For each type of study, a different, timescale dependent metric is needed to 

measure the accuracy of models for solar PV power plant output.  

In this analysis we examine current PV power plant output models to assess the accuracy of 

simulated PV power plant variability.  To our knowledge, these models have not previously been 

compared to one another and have not been validated for specific grid integration applications, 

making it difficult to choose the best model for integration studies. We aim to compare methods, 

data requirements, and ease of implementation for each model, and to test the accuracy of each 

model by creating application-specific validation metrics.  

This work is presented in two parts. This report describes in detail the candidate methods for 

simulating PV power plant output variability. This allows for both an understanding of the inputs 

needed to run the models and of the complexity of implementing each model. Section 2 gives an 

overview of the steps for modeling a PV power plant. Section 3 describes the procedure, 

implementation, and data requirements of 6 different models for determining plant-average 

incident irradiance using either ground measurements, satellite measurements, or proxy plant 

measurements as solar input. The impact that the irradiance to power conversion has on plant 

output variability is detailed in Section 4, and Section 5 presents the conclusions.  

A forthcoming report will develop metrics for quantifying the accuracy of each method and will 

use these metrics to validate the methods against measured solar power plant data. Validation 

metrics will focus on three specific impacts that solar variability can have on the electric grid: 

a) In the seconds-to-minutes timescale, variability can cause voltage regulation or power quality issues 

locally on distribution circuits, and can cause additional tap or switching operations on transformers 

or capacitors. 

b) In the minutes-to-hours timescale, variability can increase the amount of regulating and ramping 

reserves required to balance the system. .  

c) In the hours-to-days timescale, variability and uncertainty can increase production cost by reducing 

the efficiency of generation unit commitment and dispatch. 

Combined, the two parts will advise integration studies of the best PV output variability model 

for their study based on both the ease of implementing the model and the model’s performance 

for their specific application.  
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2. PV POWER PLANT MODEL OVERVIEW 

Predicting the output of a PV system or PV power plant involves the following modeling steps 

[3]: 

1. Irradiance and Weather 

2. Incident Irradiance 

3. Soiling, Shading, and Reflection Losses 

4. Cell Temperature 

5. Module IV Output 

6. DC and Mismatch Losses  

7. DC to DC Maximum Power Point Tracking 

8. DC to AC Conversion 

9. AC Losses 

Modeling PV output variability requires consideration of all the steps listed above. However, PV 

power plant output variability arises primarily from variability in the plant-average incident 

irradiance (steps 1 and 2) variability, and other effects are of second order. Currently, plant-

average incident irradiance cannot be directly measured at the spatial and time scales of interest. 

Instead, plant-average irradiance is modeled based on point sensor irradiance, satellite data, or 

proxy PV plants. Section 3 of this report describes six simulation models that focus on 

determining the plant–average irradiance. 

PV variability simulations have given less attention to the irradiance to power conversion (steps 

3-9). Some studies have attempted to account for irradiance to power losses, such as the use of 

the System Advisor Model [4] in Hummon, et al. [5] and the use of the Sandia Array 

Performance Model [6] and Sandia PV Inverter Model [7] in Stein, et al. [8]. Many, though, have 

simply used a linear multiplier (e.g., [9, 10]) to determine plant power output from plant-average 

irradiance. We feel that it is important to understand the contributions to variability inherent in 

irradiance to power conversion, and so Section 4 details the irradiance to power conversion steps 

and their possible contributions to PV plant power output variability. 





11 

3. PLANT-AVERAGE IRRADIANCE SIMULATION METHODS 

Methods to simulate the variability in plant-average irradiance vary with respect to both the input 

data required and the methods used to scale the inputs to account for spatial smoothing. Three 

types of solar inputs are used: ground point sensor measured irradiance data, satellite-derived 

irradiance data, and PV plant power output measured at a different location. Table 1 shows the 

temporal resolution of each solar input and lists the models described in this section. Section 3.4 

contains a full comparison of the inputs required by each model.   

Table 1: Classification of irradiance averaging models based on input data 

Solar Input 

 

Temporal Resolution 

(time between 

measurements) 

Plant-Average Irradiance Simulation 

Methods 

ground-

measured 

irradiance 

<1-sec to ~5-min 

• time averaging 

• low pass filter 

• Wavelet Variability Model 

satellite-derived 

irradiance 

30-min (raw); 

1-min (downscaled) 

• SolarAnywhere High Resolution 

• Western Wind and Solar Integration Study II 

proxy plant <1-sec to ~5-min • plant-to-plant proxy 

For plant-average irradiance models, it is important to account for the smoothing within the plant 

due to the spatial extent of PV modules. Smoothing occurs when a portion of the plant is covered 

by clouds, but other parts of the plant experience clear-sky or even higher irradiance due to cloud 

enhancement. As clouds move across the plant, they may uncover part of the PV plant as they 

cover others. Thus, the variability in the aggregate output for the plant is smoothed compared to 

the variability at a single point sensor or a single module. This reduction is seen in Figure 1 

where the envelope of fluctuations is smaller for a 48MW PV power plant than for a point 

irradiance sensor. The magnitude of this reduction in variability due to spatial diversity has been 

observed to change with changing timescale, plant area, and daily meteorological conditions 

[11].  

For each of the models for simulating plant-average irradiance, we describe the general case 

where both model inputs and outputs represent global horizontal irradiance (GHI). The output of 

each model is then the plant-average global horizontal irradiance. When applying the models, the 

plant-average irradiance can be converted to plant-average irradiance incident on plane of the 

array (POA) (step 2) as needed for tilted or tracking PV arrays using a GHI to POA model (e.g., 

[12]). Thus, by combining the plant-average irradiance models presented here with a GHI to 

POA conversion, the plant-average incident irradiance is simulated. 
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Figure 1: Comparison of the relative variability of a point sensor (light grey) to a 48MW 
PV power plant (dark black). Y-axis units are scaled to allow for comparison between the 
point sensor and the power output.  

3.1. Methods That Use Ground Measured Irradiance as Input  

The simulation methods described in this section start with ground measured irradiance as input. 

There are a variety of possible ground irradiance measurements that can be used with these 

methods. Ideally, at least one-year of irradiance measured at 1-second resolution should be used 

to fully resolve both seasonal effects and short-timescale variability, though shorter periods of 

representative conditions can be used if that is the only data available. Usually, these methods 

use only a single irradiance point sensor as input and so in upscaling to plant-average irradiance 

make the assumption that the irradiance statistics remain homogeneous across the plant footprint. 

In these cases, it is important to both pick an irradiance sensor in close proximity to the PV plant 

to be simulated and to ensure that there are not significant meteorological gradients across the 

simulated plant footprint (e.g., due to sharp terrain changes). When multiple point sensors are 

available within the plant footprint, they can be averaged to account for statistical 

inhomogeneity, and then this average can be upscaled to simulated plant-average irradiance. 

 Time Averaging 3.1.1.

Description 

The simplest method for simulating the spatial smoothing of irradiance over a PV power plant 

footprint from measured point irradiance data is to apply a temporal smoothing to the irradiance 

time series, such as the method presented in Longhetto, et al. [13]. Assuming a square-shaped 

PV plant, the temporal smoothing window,  ̅, can be estimated as  ̅  
√ 

  
, where   is the plant 

area and    is the cloud speed.The PV power plant is then simulated by applying a moving 

average of length  ̅ to the input point sensor irradiance, where  ̅ may evolve over time as wind 

speed changes. Different sizes of PV plants can be simulated by changing the plant area.  

08:00 10:00 12:00 14:00 16:00
 

 

point sensor

PV powerplant
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Implementation  

The time averaging method can be easily implemented in a data processing tool such as 

MATLAB [14]. Cloud speeds can be obtained from measurements or numerical models [15].  

 Low Pass Filter 3.1.2.

Description 

Marcos, et al. [9] present a method for simulating PV power plant variability using a low pass 

filter. Noting the diurnal cycle (periodicity) in solar radiation, the authors applied a Fourier 

analysis to both point sensor irradiance and measured PV power plant output for plants located in 

Spain ranging in size from 143 kWp to 9.5MWp. Signals were normalized by    
           for irradiance inputs and the plant rated capacity    for power inputs to allow for 

direct comparison between irradiance and power. The point sensor Fourier spectra were found to 

have a linear region matching a function of the form      , where   is the frequency. In contrast, 

the Fourier spectra of the power plants had two distinct linear regions, one matching the same 

function form       at low frequencies (long timescales), and another at high frequencies 

matching a function of the form      , meaning that short-timescale fluctuations decay much 

more rapidly for the power plants versus the point sensor, as seen in Figure 2. The cross point 

where these two linear regions meet is termed the cut-off frequency,   .  

 

Figure 2: (Fig. 4 in Marcos, et al. [9]) Spectrum of the irradiance    recorded at Milagro, 

outpower    at Sesma (0.99MW; 0.8MW) and Milagro (9.5MW; 7.243MW) during 1 year. 
The linear region for the larger frequencies of the power spectrums can be well fit by a 

function of the form      .  
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By comparing the various sized PV plants, intuition was confirmed that the bigger the PV plant, 

the higher the cut-off frequency. The best-fit curve of cut-off frequencies over all of the plants 

was            
       . By rounding slightly, we see that the cutoff frequency scales with 

the square root of the area,    
    

√ 
. Based on this, the transfer function 

 ( )

 ( )
  

 

√ 
          

 

was proposed, where  ( ) is the GHI time series,  ( ) is the simulated power output time series, 

  
  

  
, and   is the plant area in hectares. 

Implementation  

To apply the transfer function to a time series of discrete GHI measurements, we must convert 

the transfer function from an analog to a digital filter. To do this, we can use a bilinear 

transformation to map the transfer function from the s-plane (analog) into the z-plane (digital). 

The formal definition for the transformation is    
 

 , where   is the sampling frequency of the 

measured time series, but for the bilinear transformation, this is approximated as     
   

   
. 

Through this substitution, the transfer function can be written as 

 ( )

 ( )
  

 (   )

 (   ) (   )
, 

where   
  √ 

       
 is defined for clarity. By dividing by   and (   ), we achieve the transfer 

function in the typical form used for digital filters: 

 ( )

 ( )
  

 

   
 

 

   
    

  (
   

   
)    

. 

One way to use this digital filter function is the MATLAB function “filter.” The inputs needed 

by “filter” are the measured GHI time series and the coefficients of the digital filter, which are 

found from the typical form of the digital filter:  ( )   , a( )  
   

   
,  ( )  

 

   
, and  ( )  

 

   
. The output will then be the smoothed irradiance signal, representing plant-averaged 

irradiance. 

  Wavelet Variability Model 3.1.3.

Description 

The wavelet variability model (WVM) [10] is a way to simulate PV power plant output by using 

the top hat wavelet transform to apply different amounts of spatial smoothing at different 

timescales. The first step of the WVM is to convert the measured irradiance into a clear-sky 

index by dividing by the expected clear-sky irradiance. This results in a time series that has value 

1 during clear-sky conditions, and values less than 1 when clouds are obstructing the sun. A 

wavelet transform is then used to decompose the clear-sky index into wavelet modes    ( ) at 

various timescales,   , which represent cloud-induced fluctuations at each timescale.  
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To determine how much smoothing to apply to each wavelet mode, the correlations between 

pairs of PV modules within the plant are estimated using the equation 

 (      
 )      ( 

    
 

 
     

), 

where      is the distance between modules   and  . The distance between modules is 

estimated based on input specifications about the plant: the plant footprint (area covered) and the 

density of PV modules within the plant. Correlations are simulated for all   pairs of modules in 

the PV plant, and then aggregated to find the variability reduction VR at each timescale: 

  (  )  
  

∑ ∑  (       )
 
   

 
   

. 

Each wavelet mode of the irradiance clear-sky index    ( ) is divided by the square root of the 

corresponding   (  ) to create simulated wavelet modes of the entire power plant,    
 ( ). 

Figure 3 shows an example wavelet decomposition of the irradiance clear-sky index and the 

simulated plant averaged wavelet modes. By applying an inverse wavelet transform to these 

scaled wavelet modes, the clear-sky index of area-averaged irradiance over the whole power 

plant is obtained. Finally, this is converted into plant averaged irradiance by multiplying by the 

clear-sky expected irradiance. 

Implementation  

Implementation of the WVM involves more steps than the two previously discussed methods. 

First, a clear-sky model (e.g., Ineichen and Perez [16]) should be used to create the clear-sky 

index. Next, the top hat wavelet transform of the clear-sky index should be obtained. The top hat 

wavelet is not native to, for example, MATLAB’s wavelet toolbox, but is relatively simple to 

code as the differences of moving averages with different temporal windows. For example, the 4-

second wavelet mode is the 4-second moving average minus the 8-second moving average.  

Based on the plant footprint and density, discrete points can be used to simulate PV modules 

within the plant to compute the distances between modules. Cloud speeds obtained from 

measurements or models, as mentioned above, are combined with distances to determine 

correlations at each timescale. From these correlations, it is straightforward to compute the 

variability reduction VR and apply the scaling at each wavelet mode. The inverse wavelet 

transform for the top hat wavelet is simply the summation of wavelet modes.  
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Figure 3: (Fig. 5a in Lave, et al. [10]) Top most plots show clear-sky index time series; 
and bottom 12 plots show wavelet modes for Ota City on October 12, 2007. Black lines 
are based on the clear-sky index of the measured GHI while the magenta lines show 
the simulated spatial average clear-sky index accounting for spatial smoothing across 
the PV plant.  

3.2. Satellite Measured Irradiance as Input 

The models described in the previous section all require one or more ground irradiance sensors 

in close proximity to the PV plant to be simulated. In some cases, however, no measurements 

exist, or the period of record is not long enough to ensure representative results. Because of this, 

some methods use satellite-based irradiance as input. Satellite imagery covers most of North 

America through the GOES satellites at up to 0.01° by 0.01° resolution (approximately 1 by 1 

km at 23° latitude), with images captured once every 30-minutes. Both methods discussed in this 

section use irradiance derived from GOES imagery, though additional satellites exist that cover 

other areas in varying levels of detail, and similar methods can be applied to other areas. The 

extensive coverage area and typically long period of record (>10 years) for satellite-based 

irradiance make these data attractive for PV plant modeling. 
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 Clean Power Research: SolarAnywhere 3.2.1.

Description 

The Clean Power Research SolarAnywhere High Resolution [17] product delivers irradiance at 

1-minute time intervals over a 0.01° by 0.01° grid covering most of North America. Satellite 

measurements at 30-minute intervals are used as inputs to a model that downscales to simulated 

1-minute time series. The downscaling is achieved by advecting clouds between the two satellite 

images with a timestep of 1-minute. At each minute, the irradiance is determined based on the 

image created by the simulated cloud advection. The SolarAnywhere High-Resolution simulated 

irradiance has been shown to match the variability of ground-measured irradiance reasonably 

well, as shown in Figure 4. It is worth noting that the size of the grid cells (~1km
2
) used in this 

dataset contain approximately the same area as a 30MW utility-scale PV plant. This, combined 

with the averaging inherent in advecting the clouds from one image to the next, may lead to an 

underestimation of the variability at short timescales for smaller PV plants. 

 
Figure 4: (Fig.  on slide 13 in Hoff [17]) Comparison of ground measurements to the 
SolarAnywhere High Resolution data.  

Implementation  

The SolarAnywhere High Resolution methods have not been rigorously documented in a public 

work, and so it would be difficult to exactly follow the same methods. Additionally, the 

excessive amounts of data (0.01° by 0.01°at 1-minute resolution for 1-year or longer time record) 

required to be processed would likely be very difficult for an individual user to manage. The 

satellite to irradiance model is fairly well documented (e.g., Perez, et al. [18]), and 0.1° by 0.1, 1-

hour Solar Anywhere data for 1998 through 2009 is available through the National Solar 

Radiation Database [19], but this is likely not sufficient temporal or spatial resolution for 

variability studies. Thus, in order to work with the SolarAnywhere High Resolution data, one 

would have to purchase the data from Clean Power Research. 



18 

  Western Wind and Solar Integration Study Dataset II 3.2.2.

Description 

For use in the Western Wind and Solar Integration Study (WWSIS), Hummon, et al. [5] used a 

combination of downscaling and upscaling to simulate 1-minute, plant-average irradiance data 

for 2007.  To achieve the downscaling, ground-measured irradiance was collected at 7 sites at 1-

minute temporal resolution. From the clear-sky index of these ground measurements, 5 different 

classifications of the sky conditions were obtained, ranging from consistently clear or cloudy to 

partially variable to sharply variable. By combining the ground measurements with satellite 

measurements, a probabilistic lookup table was created, showing the probability of having any of 

the sky conditions given a satellite image with certain distance-weighted statistical values for the 

”patch” of satellite data covering ~4500 km
2
 surrounding a ground site. Using patches allowed 

for better definition of the sky conditions than using a single grid cell. 

In order to simulate the 1-minute irradiance at a given site, 1-hour satellite-derived irradiance 

patches were used as inputs. Based on the probabilistic lookup tables, a sky condition state was 

assigned for each hour, and the clear-sky index was simulated at 1-minute resolution based on 

the variability statistics of that sky condition state. The exact method used to synthesize a 

downscaled irradiance time series varied by sky condition. For a full description, of the 

downscaling, see Hummon, et al. [5].  The upscaling of the irradiance data to represent plant 

average irradiance was performed following the Marcos, et al. [9] method described in Section 

3.1.2. The WWSIS dataset was found to agree reasonably with measured data at most sites [20].   

It is worth noting a similar study by Stein, et al. [8], which also used hourly satellite data as 

input, but varied in the downscaling and upscaling methods. The hourly satellite irradiance was 

downscaled by creating a library of more than 5,000 one-day sequences of ground measured 

irradiance at 1-minute resolution. The library day which had hourly-averages that best matched 

the hourly satellite data at each study site was used to represent 1-minute irradiance at the study 

site. Special care was given not to duplicate library days to maintain proper correlations between 

sites. Since the library days were based on point sensor measurements, they were upscaled to 

simulate plant-average irradiance using the Longhetto, et al. [13] time-averaging method.  

Implementation  

The method could be followed after a rigorous reading and duplication of Hummon, et al. [5]. 

However, for most applications, if 2007 is an appropriate year for the study and the study 

locations are in the southwest U.S., it would probably be best to request the data from the 

National Renewable Energy Laboratory.  
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Figure 5: (Fig. 3 in Hummon, et al. [5]) Three consecutive hours (from 1 pm to 3 pm) on 
Aug. 10, 2005 at SRRL. The spatial pattern shows a trend towards increasing 
cloudiness over the afternoon..  

3.3. Proxy Plant 

Description 

Power measurements from a monitored, existing power plant can be used as a proxy for 

simulating a proposed PV plant. For example, the variability of a monitored 20MW plant could 

be used as a proxy for a hypothetical 20MW PV plant to be built near the current plant. Plants 

smaller than the monitored plant can be simulated by selecting a smaller subset of the monitored 

plant (e.g., 10MWs of a 20MW plant), but it is difficult to accurately simulate larger PV plants 

since this method does not directly account for spatial smoothing. Additional corrections for the 

available solar resource, module temperature, and module orientation must be made to ensure a 

reasonable simulation. Consideration should be given to whether the cloud patterns at the 

monitored plant are similar enough to the simulated plant. In many cases, even small spatial 

separations can cause significant meteorological differences, resulting in large error in the proxy 

method useless. 

Implementation  

Implementation will depend on data availability. If, for example, measurements were known for 

a PV plant in Las Vegas, NV, those could be used as a proxy for simulating a similar-sized PV 

plant a short distance away, such as one in Henderson, NV. If the Henderson plant to simulate 

were smaller, then a sample of the inverters at the Las Vegas plant could be used instead of the 

whole plant. Large errors would likely result if using a Las Vegas plant as a proxy for a Seattle, 
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WA plant due to the significant meteorological differences between the two locations, so care 

should be taken to match meteorological conditions when using the proxy method. As a first 

step, topographical features should be matched (i.e., use a coastal city as a proxy for another 

coastal city), and more detailed comparisons of the irradiance variability should be performed 

when possible. 

3.4. Input Requirements and Availability 

In choosing a method to simulate the plant-average irradiance, it is important to understand the 

input requirements. Table 2 is a quick reference of the inputs needed for each method. In some 

cases, the simulation method may be dictated by the available data.  

Table 2: Comparison of inputs for the 6 plant-average irradiance simulation methods. 

The three methods based on ground-measured irradiance have similar input requirements, except 

that the low pass filter method does not require cloud-speed as an input. Cloud speed can be 

reasonably estimated from radiosonde measurements or from numerical weather forecasts [15]. 

The plant properties (footprint/area, rated capacity, and density of PV) should all be specified by 

the integration study or easily approximated (e.g., by assuming a square-shaped plant). 

Therefore, only the availability of point sensor irradiance data will dictate whether the ground-

measured irradiance based methods can be used. Measured point sensor irradiance time series are 

common, and are often publicly available (e.g., the NREL Measurement and Instrumentation 

Data Center [11]). For variability studies, real-time data is not required, and historical data may 

increase the number of available irradiance time series. Many irradiance sensors have been 

installed for many years, and so have a long period of record allowing for capture of seasonal 

Solar Input  Simulation Method Inputs Required 

ground-

measured 

irradiance 

time averaging point sensor irradiance; cloud speed; plant area 

low pass filter 
point sensor irradiance; plant rated capacity; 

plant area 

Wavelet Variability 

Model 

point sensor irradiance; plant footprint, density of 

PV coverage, cloud speed 

satellite-derived 

irradiance 

SolarAnywhere High 

Resolution 

time series of satellite images (to follow procedure) 

or money (to purchase SolarAnywhere product) 

Western Wind and 

Solar Integration 

Study II 

satellite-derived irradiance at multiple locations; 

ground measured irradiance at 1-min temporal 

resolution (to create lookup table);  plant rated 

capacity; plant area 

proxy plant plant-to-plant proxy power output from nearby plant; plant rated capacity  
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and annual trends. Since the time resolution of the simulated power output is the same as the 

input point sensor irradiance, high-frequency (e.g., 1-second) irradiance time series are needed to 

simulate short-timescale effects. The exact temporal resolution of point sensor irradiance needed 

will depend on the study purpose. 

The SolarAnywhere High Resolution method may be more limited. It requires a time series of 

visible satellite images at native satellite resolution (0.01° by 0.01°). While theoretically these 

are available publically (e.g., from NOAA [9]), the data storage and processing requirements 

mean integration studies would likely not attempt this method and instead would purchase the 

processed SolarAnywhere High Resolution product. Data availability would then be determined 

by the study budget and the coverage area of SolarAnywhere.  

The WWSIS method requires both satellite-derived irradiance values over a large area 

surrounding the PV plant to be simulated, and ground irradiance measurements at 1-minute 

temporal resolution to create the lookup table of sub-hourly irradiance statistics. The 0.1° by 0.1° 

resolution satellite data required is available through the National Solar Radiation Database 

(NSRDB) [19], and ground irradiance measurements are relatively easy to find, as mentioned 

above. Thus, input data should be available over the NSRDB coverage area (and other areas with 

sufficient satellite coverage) if an integration study chose to use the WWSIS method to simulate 

irradiance.  

The proxy-plant method requires power output measurements from a nearby PV power plant. 

These are difficult to obtain as this information is usually considered proprietary by plant owners 

and operators. Additionally, since most PV power plants are newly built, the period or record for 

power measurements is short, making it difficult to accurately capture seasonal or annual trends. 

Just as for the ground irradiance methods, high-frequency measurements are needed to capture 

short-timescale effects, further limiting data availability as some plants are only monitored at low 

frequency (e.g., 15-minutes).  
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4. IRRADIANCE TO POWER MODELS AND VARIABILITY EFFECTS 

To be useful to grid integration studies, the plant-average irradiance simulated using the methods 

listed in section 3 must be converted to plant power output. In this section we describe the steps 

to convert from incident irradiance to AC power output, with a focus on the contributions to PV 

plant variability. We also mention models that can be used to simulate each step.  

4.1. Step 3: Soiling, Shading, and Ground Reflection  

Factors such as shading, soiling, or unusual ground reflections can lead to more or less irradiance 

reaching the plant’s PV modules. Module soiling typically increases slowly over long timescales, 

but can change almost instantaneously when precipitation or maintenance cleans the modules. 

Shading and reflection losses may vary rapidly. For example, row-to-row shading can be 

instantaneous and lead to a significant drop in plant output. Ground-reflected irradiance can be 

significantly increased by snow covering the ground and then be reversed by melting. 

The effects of soiling, shading, and ground reflection are typically small, and in most cases, a 

constant multiplier (e.g., in PVWatts [21]) can be used to reasonably model these effects. 

However, it is important to remember that isolated events (e.g., rain cleaning a module, the onset 

of one panel shading another, or snow melting) may lead to a significant contribution to plant 

variability that is not capture by a linear model. More detailed models do exist if plant properties 

(e.g., module layout) are known. For example, 3-D shadow modeling (e.g., [22]) can be used to 

predict shading effects. Kimber, et al. [23] propose a model of soiling-related PV system 

performance degradation based on a detailed study of soiling of systems in California.  

4.2. Step 4: Cell Temperature 

As cell temperatures increases, PV modules become less efficient at converting incident 

irradiance into DC power. The decrease in efficiency depends on the PV technology being used, 

but a rule of thumb is that silicon modules’ DC power output is reduced by 0.5% per °C of cell 

temperature increase.  

Cell temperatures are the biggest contributor to non-linearity when converting plant-average 

irradiance to plant power. Cell temperatures scale the PV plant output: cool cells will have a 

higher maximum output than warm cells under the same irradiance conditions. Because of this, 

plants often produce maximum power output in the late spring when temperatures are cool 

instead of in the summer when maximum irradiance is incident on the plant but temperatures are 

high. This scaling affects PV plant variability in that the magnitude of variability is partially 

dependent on the cell temperatures within the plant. Additionally, quick changes in cell 

temperatures (e.g., due to increased wind cooling) can contribute to plant variability. 

However, cell temperatures are rarely measured and instead must be approximated using a 

model, typically involving ambient temperature, wind speed, and irradiance. For example, in the 

Sandia Photovoltaic Array Performance Model [6], the module temperature    is modeled as 

    { 
      }    , where   is the incident solar irradiance (W m

-2
),    is the wind speed 

at 10m height,    is the ambient air temperature, and   and   are empirically determined 
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coefficients based on the type of PV module. Most cell temperature models are steady-state, i.e., 

they assume that PV cell temperature responds instantaneously to changes in air temperature or 

irradiance.  In contrast, many PV modules have sufficient thermal mass that cell temperatures 

change over a time scale of several minutes. A more advanced transient temperature model [24] 

has been evaluated by Luketa-Hanlin and Stein [25], and seems to better follow temperature 

fluctuations at short time scales, which is important for variability analysis.  

4.3. Steps 5-6: Module I-V Output and DC Mismatch Losses 

Beyond incident irradiance and temperature, there can be further losses on the DC side which 

contribute to the variability of the PV power plant. Each module can be represented by its own  

I-V curve and an associated maximum power point (MPP). The I-V curve changes as the 

irradiance and temperature change. When modules are connected in series to construct a string 

and connected to an inverter with a maximum power point tracker, the current flowing through 

each module must be the same, and therefore, because of slight differences in the MMP of the 

modules there will be some amount of DC mismatch. Because the output of each module is 

changing dynamically as irradiance and temperature change, the combined MPP will vary and 

contribute to power output variability in a way that is not linear with respect to irradiance.  

In our judgment, these losses are relatively small (e.g., based on MacAlpine, et al. [26]) because 

by design, modules in the same string will be electrically similar, and will be proximal and hence 

will see similar irradiance and temperature conditions. Thus, the effect on the variability in 

overall plant output of DC side losses is also likely to be minimal. However, there are a variety 

of models for simulating the I-V curves or points on the I-V curves of PV modules. Single diode 

models for simulating the whole I-V curve include PVSyst [18] and the De Soto “Five-

Parameter” Model [27]. Point models, which usually predict the maximum power point or other 

important points on the I-V curve (   ,    , etc.) include the Sandia Photovoltaic Array 

Performance Model [6] and PVWatts [21]. Both single diode and point models assume a 

homogeneous plant with the same irradiance and cell temperature at every module and so 

anisotropy in the plant may lead to errors in these models. 

4.4. Steps 7-9: DC to AC Losses 

DC to AC conversion efficiency depends on the inverter specifications, and can change as a 

function of AC output power, DC voltage, and, where applicable, inverter output power factor. 

Typical grid-tied inverter efficiencies exceed 95% in most operating conditions. However, 

inverter operation can impact PV plant variability. Inverters are limited in AC output by their 

nominal rated capacity. When an inverter achieves its maximum AC output, called inverter 

saturation or clipping, it will have a cutoff effect that will scale the PV plant AC power output. 

For example, a 500kW AC inverter will be limited to this output level, even if the input DC 

power exceeds this rating. Increases in DC power production (positive ramps) will have no effect 

on plant AC power output variability when the inverter is saturated. Inverter saturation is 

especially important to consider as many PV power plants are intentionally designed with more 

DC capacity than inverter AC rating and so may often saturate. 

Inverters can also introduce short-timescale fluctuations. Inverters track the changing MPP of the 

combined I-V curves of PV arrays, and different inverters have different tracking algorithms. 



25 

Some inverters have time lags in finding the MPP, and while searching or when abruptly 

changing power points may contribute to plant variability. Inverter models include the Sandia 

Inverter Model [7] and the Driesse Inverter Model [28]. Both require inverter-specific 

performance parameters. 

Further losses can occur in the AC transmission of power due to AC wiring losses or transformer 

losses. In most cases, there will not be significant variability in these losses, and a constant 

multiplier (e.g., 0.99 as in PVWatts [21]) will be appropriate.  
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5. CONCLUSION 

This report aims to inform grid integration studies regarding available methods to simulate PV 

power plant output for their specific study. We have described six different methods which use 

either ground measurements, satellite measurements, or proxy plant measurements as input. The 

way to implement each method was described to provide an understanding of its ease of use. 

Additionally, the input data requirements and availability were compared between the models. In 

some cases, the information presented in this report will be sufficient to determine which method 

or subset of methods will be feasible to use. For example, if no local ground irradiance or power 

measurements were available, a study might be forced to use one of the satellite data methods.  

In most cases, though, more than one method may be feasible and hence model accuracy should 

also be considered. In a follow-on analysis we will evaluate the methods described in this report 

by defining application-specific validation metrics to test each method’s performance at 

simulating power plant variability at timescales relevant to the three main areas of concern: 

voltage flicker (seconds to minutes), grid regulation (minutes to hours), and load balancing 

(hours to days). Using these validation metrics, each simulation method will be compared to 

measured PV plant output, and the method’s accuracy will be quantified for each application. 

Together, this report and the follow-on analysis will allow integration studies to choose the best 

PV output simulation method for their study based the ease of implementing the method, the 

method’s input data requirements, and the method’s accuracy for the study’s application.  
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